TREATMENT PROCESSES FOR CORROSIVE WATER

2018 Central West Texas Regional School

Joshua L. Berryhill, P.E. Enprotec / Hibbs & Todd, Inc. (eHT)

Outline

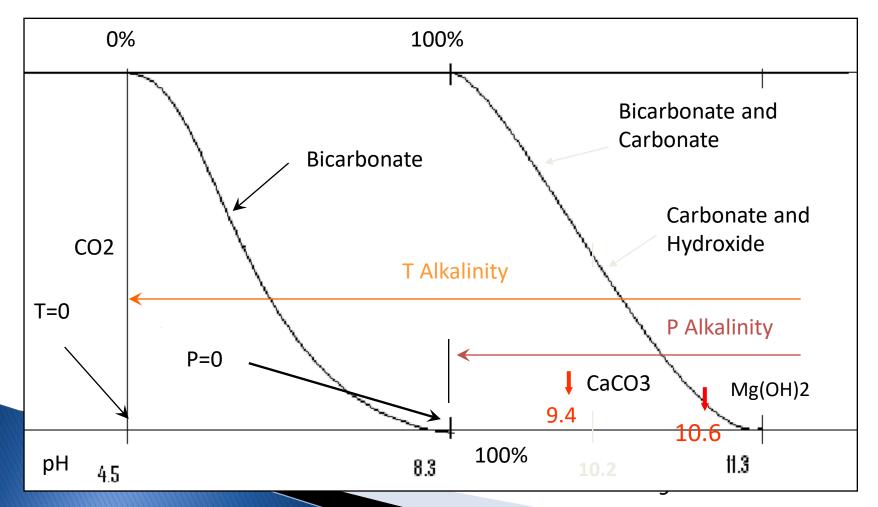
- History of Corrosion Control
- Lead and Copper Background
- Past Corrosion Control Review (Pre-Flint)
- Current Corrosion Control Review (Post-Flint)
- Current Corrosion Control Analyses
- Treatment Options for Corrosion Control
- > Summary

- Most all forms of corrosion are chemical reactions (erosion is the exception) that require three things:
 - A carrier such as Water that allows the movement of positively charged ions (from Anode+ to Cathode-)
 - A condition (water metal contact) that allows metals to disassociate (ionize) and allows electrons to flow
 - An imbalance that favors the transport of metals or ions to achieve a chemical balance in a water solution.

- Corrosion Control is employed in water treatment to protect pipeline materials, appurtenances and fittings from leaching problematic (iron) and/or dangerous inorganic chemicals (lead and copper).
- > Two types of treatment are generally used:
 - Chemical Adjustment in Water Treatment
 - Post-treatment via Sequestering
- Protection Measures in water system include the use of sacrificial metals and electronic cathodic protection.

Factors Affecting Corrosion Control

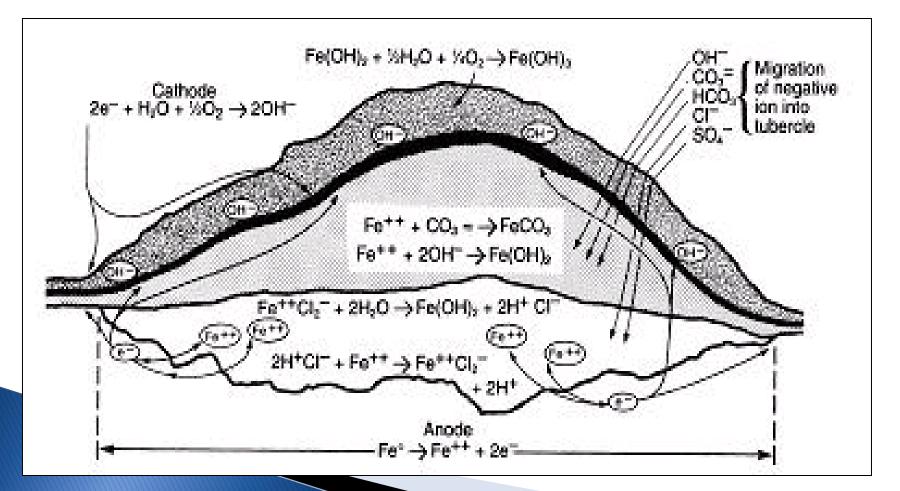
Typical Water Quality Parameters				
pH ¹	Orthophosphate ²			
Alkalinity	Silica ³			
Calcium	Temperature ¹			
Conductivity	Hardness			
 ¹ Measured on-site. ² Applies when a phosphate-containing inhibitor is used. ³ Applies when a silicate-containing inhibitor is used. 				

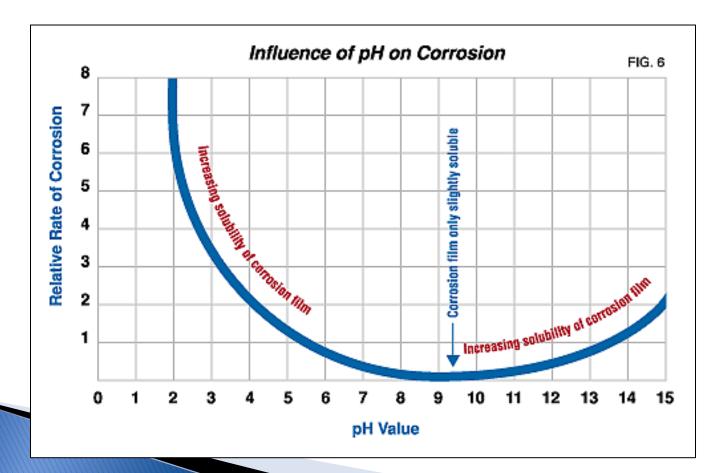

Water Hardness

- Hardness in Water causes scaling, causes fibers in clothes to become brittle and increases the amount of soap that must be used for washing
- Hardness in water is caused by the water's Calcium and Magnesium Content
- Water is considered hard when it has a hardness concentration of > 100 mg/L expressed as calcium carbonate equivalent
- Water that hardness < 100 mg/L expressed as CaCO3 is considered soft
- Hardness can either be removed by water treatment or sequestered using phosphates

Water Alkalinity

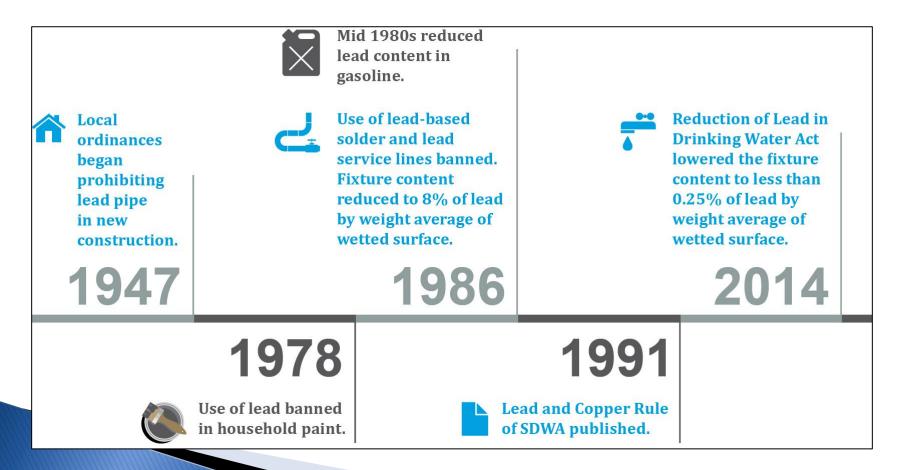
- The capacity of water to neutralize acids.
- The measure of how much acid must be added to a liquid to lower the pH to 4.5
- It is caused by the water's content of carbonate, bicarbonate, hydroxide, and occasionally borate, silicate, and phosphate.
- In natural waters, Alkalinity = Bicarbonate Hardness = Total Carbonate Hardness

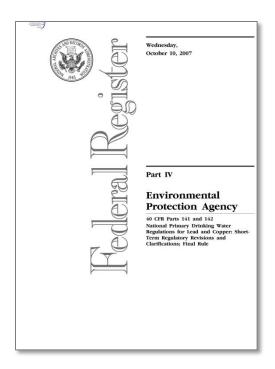

Relationships among pH, Alkalinity and Indicators


Types of Alkalinity that can be Present at pH Values

- Below 4.5 only CO₂ present, no Alkalinity
- Between 4.5 to 8.3 only Bicarbonate present
- Between 8.3 to 10.2 Bicarbonate & Carbonate.
- Between 10.2 to 11.3 Carbonate & Hydroxide
- At 9.4 Calcium Carbonate becomes insoluble and precipitates
- At 10.6 Magnesium Hydroxide becomes insoluble and precipitates

Cathodic Action Resulting in Tuberculation in Water Pipelines

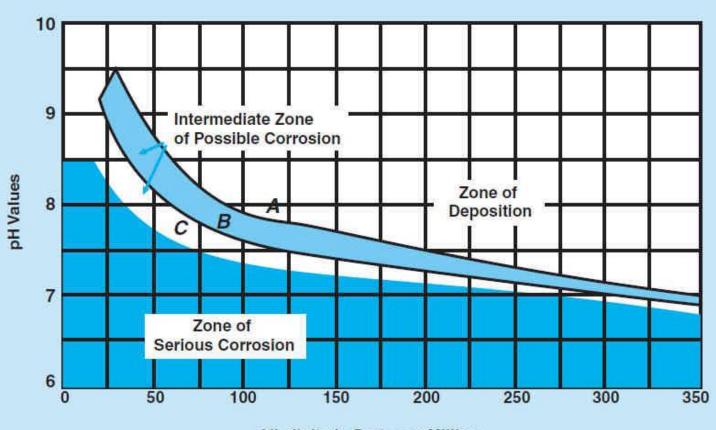

Effects of pH on the Rate of Corrosion of Iron in Water


Effects of Raising or Lowering Alkalinity and CO₂ by Chemical Addition

CHEMICAL	∆ □mg ALKALINITY, CaCO₃ per mg CHEMICAL	∆□ mg CO ₂ , per mg CHEMICAL
Alum	-0.45	0.40
H ₂ SO ₄	-1.02	0.90
HCI	-1.37	1.20
Ca(OH) ₂	1.35	-1.19
Na ₂ CO ₃	0.94	-0.41
NaOH	1.25	-1.10
NaOCI	0.67	-0.59
Chlorine (gas)	-1.41	1.24

History of Lead Regulations

- Published in 1991 and required first round of sampling in 1992
- Identified corrosion control as method to reduce the risk of lead and copper leaching into drinking water
- Requires monitoring at high risk sites every 3 years if compliance has been maintained
- Only SDWA rule that is monitored at water consumer's tap


- Rarely from source water or distribution mains
- Service lines
 - Lead service lines, on either side of the meter
 - Goosenecks or pigtails
- Customer plumbing
 - Solder
 - Plumbing fixtures

- Exposure to copper can cause stomach and intestinal distress, liver and kidney damage, and complications of Wilson's disease.
- EPA set an MCLG of 1.3 mg/L

BB Matt (eee.sxc.hu.com)

Alkalinity in Parts per Million

Note:

- A = Curve of values necessary to produce a coating of calcium carbonate.
- B = Curve of calcium carbonate equilibrium.
- C = Curve of values necessary to prevent iron stains.

Baylis Curve Example

 $pH = log \{2.2 \text{ x } 10^6 \text{ X } \frac{(\text{Alkalinity in mg/L as CaCO3})}{(\text{CO}_2 \text{ in mg/L})} \}$

Measured Alkalinity $60 \text{ mg/L} \text{ as } \text{CaCO}_3$ Measured CO_2 = 7.4 mg/L pH = log {2.2 x 10^6 X 60/7.4 } = 7.25

Need to increase pH to reduce corrosivity

Use of the Langelier Saturation Index (LSI) for Determining Water Stability

- Every water has a particular pH value where the water will neither deposit scale nor cause corrosion.
- A stable condition is termed saturation.
- Saturation (pHs), varies depending on calcium hardness, alkalinity, TDS, and temperature.

- LSI = pH - pHs

Corrosive < LSI = 0 > Scale Forming

LSI	Description	General Recommendation		
- 5	Severe Corrosion	Treatment Recommended		
- 4	Severe Corrosion	Treatment Recommended		
- 3	Moderate Corrosion	Treatment Recommended		
- 2	Moderate Corrosion	Treatment May Be Needed		
-1	Mild Corrosion	Treatment May Be Needed		
-0.5	Mild Corrosion	Treatment May Be Needed		
0	Near Balanced	Probably No Treatment		
0.5	Some Faint Coating	Probably No Treatment		
1	Mild Scale Coating	Treatment May Be Needed		
2	Mild to Moderate Coatings	Treatment May Be Needed		
3	Moderate Scale Forming	Treatment Advisable		
4	Severe Scale Forming	Treatment Advisable		

Water Characteristic Likely Cause

Red/reddish-brown Water Blueish Stains on fixtures Black Water Foul Tastes and Odors Loss of Pressure Lack of Hot Water Reduced Life of Plumbing Tastes Like Garden Hose Distribution Pipe Corrosion Copper Line Corrosion Sulfide Corrosion of Iron By-Products of Bacteria Tuberculation Scaling Pitting from Corrosion Backflow From Hose

Development and Review of Corrosion Control Study with TCEQ

- WQPs Reviewed
 - Calcium, Alkalinity, Conductivity, TDS, pH, Temperature
- Historical analyses completed
 - LSI
 - Aggressiveness

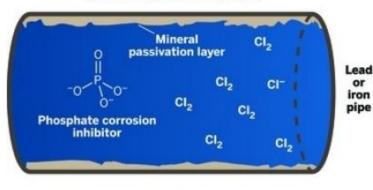

 Most common treatment method was pH adjustment via sodium hydroxide (caustic) addition

THE FLINT WATER CRISIS

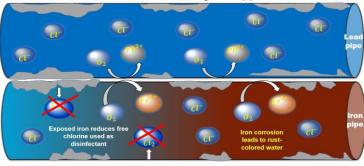
The American city of Flint, Michigan, has been in the news recently due to the discovery of very high levels of lead in its water supply. But how did this lead get there? Here's a brief explainer.

When high levels of trihalomethanes were detected in Flint's water, ferric chloride (FeCl₃) was added to improve removal of organic matter. However, this increased the water's already high concentration of chloride ions, and as a result made the water more corrosive.

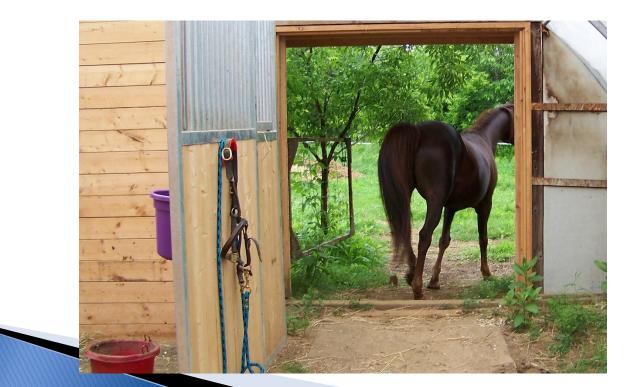
Orthophosphates are added to water to reduce the amount of lead leaching into it from pipes. They do this by forming a layer of low-solubility lead-phosphate complexes inside the pipe. This method of corrosion control was not used for the Flint River water supply.



© COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | @COMPOUNDCHEM Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.


Before: Treated Detroit water

Phosphate corrosion inhibitor helps maintain a mineral passivation layer on the inside of Flint's pipes, protecting them from corrosion. With little corrosion, chlorine disinfectant levels remain stable.



After: Treated Flint River Water

Lack of corrosion inhibitor, high chloride levels, and other factors cause the passivation layer to dissolve and fall off, leading to increased corrosion in pipes. As pipes corrode, chlorine disinfection breaks down. Oxides such as dissolved O₂ corrode pipes and leach soluble metal.

- > Texas Legislature Response to Flint:
 - "We will not let Flint happen in Texas...period."

How did it happen here?

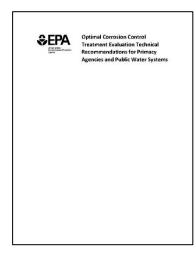
- Source water quality changes not accounted for
- Equipment calibration not current (pH meters)
- Focusing only on finished turbidity
- Focusing only on DBP levels
- Not maintaining a stable monochloramine
- Letting nitrification get out of control in distribution

What do we do about it?

- If you already have lead and copper spikes, or the potential for it due to corrosive water...
 - You must develop an Optimal Corrosion Control Treatment (OCCT) approach
 - Site-specific What works for your neighbor may not work for you...

- > Optimal corrosion control treatment (OCCT)
 - Chemical treatment designed to reduce the corrosivity of water
 - Raising pH to make water less acidic
 - Adding buffering to make water more stable
 - Adding corrosion inhibitors to create a barrier to inhibit metals release
 - OCCT required for large systems
 - Required for small/medium systems only if the action level is exceeded
 - Recommended if finished water quality is corrosive or almost corrosive

Use of the Langelier Saturation Index (LSI) for Determining Water Stability


- Every water has a particular pH value where the water will neither deposit scale nor cause corrosion.
- A stable condition is termed saturation.
- Saturation (pHs), varies depending on calcium hardness, alkalinity, TDS, and temperature.
- LSI = pH pHs
 - Corrosive = LSI <= 0
 - Slightly Scale Forming >= 0.25
 - Moderately Scale Forming >= 0.5

LSI	Description	General Recommendation		
- 5	Severe Corrosion	Treatment Recommended		
- 4	Severe Corrosion	Treatment Recommended		
- 3	Moderate Corrosion	Treatment Recommended		
- 2	Moderate Corrosion	Treatment May Be Needed		
-1	Moderate Corrosion	Treatment May Be Needed		
-0.5	Mild Corrosion	Treatment May Be Needed		
0	Near Balanced	Possibly No Treatment		
0.5	Some Faint Coating	Probably No Treatment		
1	Mild Scale Coating	Treatment May Be Needed		
2	Mild to Moderate Coatings	Treatment May Be Needed		
3	Moderate Scale Forming	Treatment Advisable		
4	Severe Scale Forming	Treatment Advisable		

> Two Primary Approaches for Analyses:

- RTW Model (AKA TetraTech Calculator)
 - Rapid analysis of LSI and CCPP based on water quality data
 - Allows for chemical feed adjustment to quickly gauge changes to LSI and CCPP
- EPA OCCT Guidance Manual Evaluation
 - Longer analysis, but also includes corrosion inhibitor options not included in the RTW model

STEP 1 Enterimited water d							
	araclaristic	6		STEP 2: Enter amount of as	ch chroni	1	
Meditred TDS	918	nct.		to be added tecoressed as 1			
Mecsured Merga 23.0	20	3100		Press Citte C to select chemi	cals for th	IS IST	
Measured ph	7.2		1 1	Aluer 12 H2C	0	rat	1
Measured alk as CaCO3	270	nc/.	1 1	Catton doubt	0	nas	1
Measured Cit. as CaCOI	279.66	ngt.	1 1	Constic sode	0	nat	1
Neasured G	171	mçt.	1 1	Chianne gas	0	ngs.	1
Measured 804	274	865.	1 1	Fertic d'Ionde (aninycross	0	inge.	1
For CT and TTHM functions (inter ourren		10	Ferrous suffete '7H2C	0	mail	1
Treated water of			1 1	Hycrochioric acid	0	nut	1
Chiene residua		щÇž	1	Hydroflassikie acr	0	rige	1
Chlorine or hypochlorite cos-			1 1	Line (sizkec)	0	nut	1
as chiphne equivalen		nçt.		Soda ash	0	ngt	1
Intern alklinty Intern Ca. as Ca(20)	270 290	965. 1167.	>20 mgL > 40 mgL	Internet cal inform water che Interne pH Precipitation potentia	7.20	nat	0csrcd 63-93 4-10 mgs
	270 2MD 2 B	nčy.	> 40 mgL > 40 mgL > 5.0	Interim pH Precipitation potentia Langellot Inde	7.20		68-93
Intern Ca. as CaCo Mo(CH-SO4) Press PAGE DOWN for soci Colouroid Initial water chara	270 3MD 3.B onsi rHat	nçı. Interim di	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interim pH Precipitation patientia Langelier Inde Parademitics If Jeaned.	720 19.00 0.22		68-93 4-10 mg/L
Intern Ca, as CaCo) AlacCir-SCA() Press PACE DOWN for edicil Calculated initial water chara Initia racus	270 2MD 2.8 onsi PHai chaiste 272	nçı. ncəta ar	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interim pH Precpitation patenta Langeline indox hereclefishes if Jeaned. Traceration final water charts ofter CaCO2 precipitatio:	7.20 19.05 0.27	ngit	68-93 4-10 mg/L
Intern Ca. as CaCo Mo(CH-SO4) Press PAGE DOWN for soci Colouroid Initial water chara	270 3MD 3.B onsi rHat	nçı. Interim di	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interim pH Precipitation patientia Langelier Inde Parademitics If Jeaned.	720 19.00 0.22	ngs	68-93 4-10 mg/L
Interim Call as CaCO Mac(In-SCH) Press PAGE DOWN for each Calculated Initial water chara Initial actility Initial Calls	270 280 28 0nsl PHal materic 282 171	ng). Inte Ini di NGA. NGA.	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Intertra pH Procession potensa Langolar Inda Tassatelistica II Jeaned. Tassatelistica II Jeaned. Tassatelistica II Jeaned. Tassatelistica II Jeaned. Tassatelistica II Jeaned. Hana Jeaned. Hana Jeaned.	7.20 19.66 0.77 theriotic 250 280	ngs ngs	68-93 4-10 mg/L
Intern Ca. as GaCO: Mac(CiricCi) Press PAGE DOWN for Holl Catalonial Initial water chara Initia racity heat Cast as CACO	270 230 235 336 FHai 536 FHai 537 337 337 337 337 337 337 337 337 337	ng). Inte Ini di NGA. NGA.	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interim pH Proop tation potentia I angetier inter Paracteristics II Jeans d. Paracteristics II Jeans d. Paracteristics II Jeans d. Paracteristics II Jeans d. Parat Jeans d. Parat Jeans d.	7.20 19.05 0.7?	ngs	68-93 4-10 mg/L
Intern Ca. as CaCO: AdoptiniCOI Press PAGE DOWN for soft Calculated Initial water obsta IITEs across Initial Ca. sat, as CaCOS Initial DPC, as CaCOS	270 230 235 336 FHai 536 FHai 537 337 337 337 337 337 337 337 337 337	ng). Inte Ini di NGA. NGA.	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interne pH Procession potentia Langeoine Internet Travelentitics III Jeans J. Traventi cell final water chara et al CaCO2 processions Prote CaCO2 processions Prote CaCO2 Prote CaCO2 Prote CaCO2	7.20 19.05 0.77 ternets 280 280 332	ngt ngt ngt	68-93 4-10 mg/L
Intern Callas CaCol Ado(Ch-RO4) Press PAOE DOWN for adol Celevand Initial water obsta Infile ado(5) Intel Callas ad CaCol Initial Diff, at CaCol Initial Diff, at CaCol Initial Diff, at CaCol Initial Diff, at CaCol	270 2MD 2.5 3.6 3.6 3.6 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	ngt. north ar ngt. ngt. ngt.	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interter pH Proop tation potentia Langelor inde Interdentifice if seared. Tracetal cell final water down other CaCO3 seedplikto: Pro1 alcohing Final accoling Final accoling Final accoling Final accoling	7.20 19.05 0.27 200 200 332 7.05	ngs ngs	68-93 4-10 mg/L
Herry Callies CarCon AlextReCh Press PAGE DOWN for addition Infler Infler Infler addition Infler Infler Infler addition Infler Infler Infler Infler	270 2MD 3.8 const PHat const PHat const PHat 272 271 802 202 ration Isoc 332	ngt. ngt. ngt. ngt. ngt.	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interter pH Proop tation potentia Langelor inde Interdentifice if seared. Tracetal cell final water down other CaCO3 seedplikto: Pro1 alcohing Final accoling Final accoling Final accoling Final accoling	7.20 19.05 0.27 200 200 332 7.05	ngt ngt ngt	68-93 4-10 mg/L
Intern Call as CaCOS ANA(CIPACA) Press PAOL DOWN for worth Catalantial Initial work obtain INITIA Cases as CACOS Initial DC, as CaCOS Initial DC, as CaCOS Theoretical (rise fin water clas- norm excity) Futer Call as as CaCOS	270 280 28 28 28 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27	ngt. nota a ngt. ngt. ngt. ngt. ngt.	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Interter pH Proop tation potentia Langelor inde Interdentifice if seared. Tracetal cell final water down other CaCO3 seedplikto: Pro1 alcohing Final accoling Final accoling Final accoling Final accoling	7.50 19.66 0.27 0.27 280 280 280 382 7.65 582	ngi ngi ngi ngi ngi	68-93 4-10 mg/L
Intern Call as CaCoo AnACONSTAN Press PAGE DOWN for solid International Initial water obtain Information action Initial Status as CaCoo Initial Ofic, as CaCoo Initial Ofic, as CaCoo Initial Ofic, as CaCoo Philar Call (to fin water obtain Institute Call (to fin water obtain Institute Call (to fin water obtain Institute Call)	270 280 28 38 38 38 38 30 30 30 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	ngt. ngt. ngt. ngt. ngt.	> 20 mgL > 20 mgL > 5.5 0 'ma watero	Institute Programonaliena Langolerine Langolerine Pravdenistics if Leara Tracel and Real water disco etair CacCO anaphilia Institute Institute Prova activy From Activy From Activy From DC, as CacCo	7.20 19.66 0.27 0.27 280 382 7.66 532	ngs ngs ngs ngs ngs uei	68-93 4-10 mg/L

The RTW Model	Ver. 4.0	ID:
The RTW Wodel	Ver. 4.0	IL

STEP 1: Enter initial water characteristics

Measured TDS	918	mg/L
Measured temperature	20	deg C
Measured pH	7.2	
Measured alk, as CaCO3	270	mg/L
Measured Ca, as CaCO?	279.66	mg/L
Measured Cl	171	mg/L
Measured SO4	274	mg/L
For CT and TTHM functions e	nter curren	t

Treated water pH Chlorine residua mg/L Chlorine or hypochlorite dos as chlorine equivalen mg/L STEP 2: Enter amount of each chemica to be added (expressed as 100% chemical). Press Ctrl+C to select chemicals for this list

Alum *14H2O	0	mg/L
Carbon dioxide	0	mg/L
Caustic soda	0	mg/L
Chlorine gas	0	mg/L
Ferric chloride (anhydrous	0	mg/L
Ferrous sulfate *7H2C	0	mg/L
Hydrochloric acid	0	mg/L
Hydrofluosilicic acic	0	mg/L
Lime (slaked)	0	mg/L
Soda ash	0	mg/L

STEP 3: Adjust at Step 2 until interim water characteristics meet your criteria

Theoretical interim water char	acteristic		Desired	Theoretical interim water characteristic:		1	Desired
Interim alkalinity	270	mg/L	> 40 mg/L	Interim pH	7.20		6.8-9.3
Interim Ca, as CaCO3	280	mg/L	> 40 mg/L	Precipitation potentia	19.66	mg/L	4-10 mg/L
Alk/(CI+SO4)	0.6		> 5.0	Langelier index	0.22		>0

Press PAGE DOWN for additional initial, interim and final water characteristics if desired.

Calculated initial water characteristic

Initial acidity	332	mg/L
Initial Ca sat, as CaCO3	171	mg/L
Initial DIC, as CaCO3	602	mg/L

Theoretical interim water characteristic:

Interim acidity	332	mg/L
Interim Ca sat, as CaCO3	171	mg/L
Ryznar index	6.77	
Interim DIC, as CaCO3	602	mg/L
Aggressiveness Inde>	12.08	

CT and TTHM Results

Required chlorine residual to maintain of	current level	of	
giardia inactivation	N/A	mg/L	
Estimated maximum total trihalomethar	ne concentra	tion change fro	om current lev

Theoretical final water characteristic:

after CaCO3 precipitation

1.0	orean e che e e la contractioner.		
Г	Final alkalinity	250	mg/L
	Final Ca	260	mg/L
	Final acidity	332	mg/L
Г	Final pH	7.05	
	Final DIC, as CaCO3	582	mg/L

Press PAGE UP to review measured initial water characteristics, chemica addition quantities and additional interim water characteristics.

N/A

%

Exhibit E.1: Identification of Potential Corrosion Control Treatment Options

CCT Options	Put an X next to all that apply	Identify possible treatment chemicals or processes for the options identified (chemical formula or common name)
Raise pH		
Raise DIC (alkalinity)		
Add orthophosphate ¹		
Add silicate		
Add blended phosphate ¹		

Additional Corrosion Potential Parameters – Modifed Larson's Ratio (LRM)

- Focused on the potential for iron corrosion based on the ratio of chloride, sulfate and sodium to alkalinity
- $LRM = ((CI⁻ + SO₄²⁻ + Na⁺)^{1/2} / Alk) \times (T/25) \times (HRT)$
 - Corrosive = LRM > 0.5
 - Moderately Scale Forming < 0.5

Additional Corrosion Potential Parameters – Ryznar Stability Index (RSI)

- Focused on the relationship of forming and maintaining a stable calcium carbonate scale film with the given water quality
- RSI = 2(pH_S) pH
 - Corrosive = RSI > 8
 - Neutral = RSI = 6-7
 - Moderately Scale Forming = RSI < 6

Additional Corrosion Potential Parameters – Aggressiveness Index (AI)

- Originally intended to determine the minimum water quality needed to prevent degradation of AC pipe
- AI = pH + log(AH) = pH + logA + logH
 - Corrosive = AI < 10
 - Neutral = AI = 10-12
 - Non-Corrosive = AI > 12

Current TCEQ Focus:

- LSI
 - Starting point:
 - LSI of 0.25-0.50 at Point of Entry
- CCPP
 - Starting point:
 - CCPP of 4-10 mg/L at Point of Entry

Why do we say "starting point"?

- Example of Water Quality #1
 - TDS = 500 mg/L
 - Temp. = 20 C
 - pH = 7
 - Alkalinity = 50 mg/L
 - Calcium = 100 mg/L
 - Chloride = 150 mg/L
 - Sulfate = 150 mg/L
- Calculated LSI = -1.11
- Calculated CCPP = -17.05 mg/L
- Considered "corrosive" likely to leach lead and copper where available

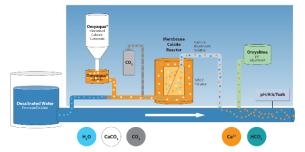
Why do we say "starting point"?

- Modification of Water Quality #1
 - Raise pH to 8 via caustic addition (dose of approx. 30 mg/L)
 - Calculated LSI = -0.09
 - Calculated CCPP = -0.7 mg/L
 - Considered "slightly corrosive", still may leach lead and copper where available
- Further Modification of Water Quality #1
 - Raise pH to 8.5 via caustic addition (dose of approx. 36 mg/L)
 - Calculated LSI = 0.47
 - Calculated CCPP = 2.82 mg/L
 - While considered "not corrosive", the low CCPP value means that a calcium carbonate passivation layer may not extend to the furthest reaches of your distribution system

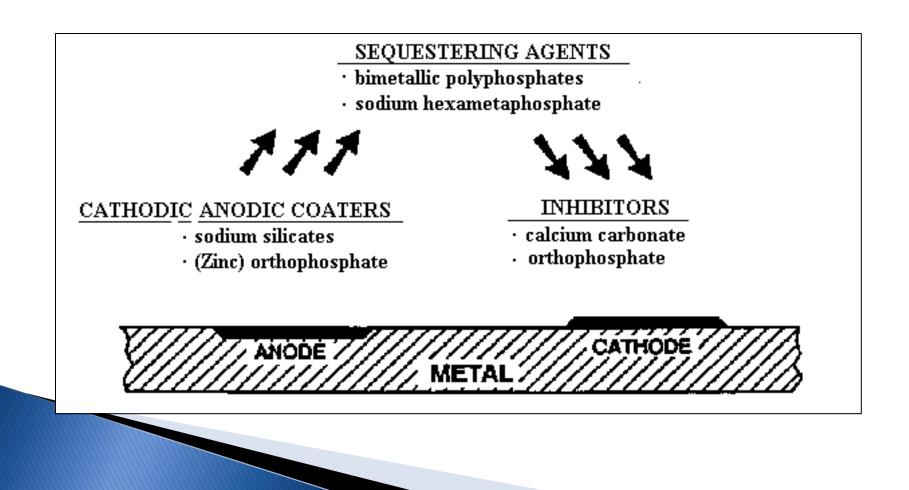
So we just need to stay above 8.5 pH, right?

- Not exactly.
 - Finished water pH above 8.5 is a challenging area to operate in
 - Scale formation is highest at the plant, and can cause scaling issues with tanks, pumps, piping and instrumentation at the plant
 - Monochloramine formation begins to transition to dichloramine and trichloramine formation, which can result in loss of total chlorine residual in distribution and accelerated nitrification
 - Increases in nitrification in distribution will use up alkalinity, which will result in a drop in pH as total chlorine breaks down
 - In other words, increasing pH above 8.5 can actually result in a <u>reduction</u> of pH in distribution!
 - If treatment at the plant is not enough, post-treatment in distribution may be necessary


- Treatment Options
 - Treatment Goals
 - Raise pH
 - Biggest impact to LSI
 - Increase Alkalinity
 - Biggest impact to CCPP
 - Increase Calcium
 - Biggest impact to CCPP


Most Common Treatment Options

Chemical	Use	Composition	Alkalinity Change per mg/L of Chemical
Caustic Soda (NaOH)	Raise pH	 93% purity Storage at less than 50% strength to prevent freezing 	1.55 mg/L CaCO3
Lime (Ca[OH]2)	Raise pH	95-98% purityDry storage with slurry feed	1.21 mg/L CaCO3
Sodium Bicarbonate (NaHCO3)	Little increase in pH	98% purityDry storage with solution feed	0.60 mg/L CaCO3
Soda Ash (Na2CO3)	Moderate increase in pH	95% purityDry storage with solution feed	0.90 mg/L CaCO3


New Treatment Options on the Horizon?

- Calcite Contactors
 - Flow through calcite packed bed contactors (or inject calcite solution) to dissolve additional calcium and alkalinity back into the finished water
- Micronized Calcium Carbonate
 - Feed of powdered lime or calcite to target the necessary calcium, alkalinity and pH levels needed (more appropriate for systems greater than 1 MGD at this time however)

Sequestering Action of Poly and Ortho Phosphates

- Post-Treatment Use of Orthophosphates for Sequestering
 - Orthophosphate is used to sequester iron ions at pipe surfaces
 - The Sequestering forms a protective coating that prevents further iron migration
 - Ortho/Poly Blends provide both sequestering of soluble iron and iron movement from pipelines under corrosive conditions

Treat, Post-Treat, or Do Both?

		Treatment Only	Post-Treatment Only	Do Both?
Advantages		One point of control	Lower capital cost	"Belt and suspenders" approach
	May address corrosion issue without post-treatment	Possibly lower O&M cost	Can balance costs	
	Limited impact on WQ at water age > 3-5 days	Need to re-dose after 3-5 days water age	Multiple points of possible failure	
	Disadvantages	Higher capital cost	Increase in phosphate load to WWTP	More strain on wholesale customers
Di		Possibly higher O&M cost	Overdosing is just as problematic as underdosing	Overdosing is just as problematic as underdosing
		May not completely address corrosion issue alone	More strain on wholesale customers	Increase in phosphate load to WWTP

Summary

Summary

We are in a new era following Flint...

- Every major treatment change will now require an evaluation of impacts on corrosion potential
- Source water quality changes (especially seasonal changes) mean re-checking your corrosion control approach
- > What works for you may not work for your neighbor, and vice versa!
- Make sure you have used all the tools in your treatment toolbox before taking steps to implement post-treatment (one point of control)
- Some water sources may require treatment and post-treatment wholesale customers should consider treatment and post-treatment options as well
- Last but not least coordinate with TCEQ on what you want to do, how you want to do it, and when you want to do it!