

PIPELINES 2019 CONFERENCE Nashville, TN July 21 – 24

Replacement of Raw Water Transmission Line with Fused Pipe System Provides Stable Water Supply to Historical City

Scott Hay, P.E., Enprotec / Hibbs & Todd, Inc. Alan Plumlee, City of Stamford Saul Hernandez, P.E., CCM, MH Civil Constructors, Inc. Shawn Garcia, P.E., Underground Solutions

Stamford, TX

- Established in 1900 when Texas Central Railroad extended from Albany, TX to lands owned by SMS Ranches
- 640 acre townsite donated by sons of Svante Magnus Swenson, owner of SMS Ranches
- Named after Stamford, CT hometown of railroad president Henry McHarg
- Became a stop on north-south Wichita
 Valley Railroad and new rail lines extended to Rotan and Spur
- Intersection of rail lines made Stamford a regional trade/shipping visitors to area
- Stamford remains a regional economic hub for Rolling Plains area north of Abilene

City of Stamford – Lake Stamford

- City located on the edge of Tornado Alley
- Officials needed to provide a local, permanent water source accessible during hazardous weather
- Stamford Dam construction began July 14, 1951, completed March 1953
 - Used to impound Paint Creek into Lake Stamford
 - Located ~10 miles northeast of the city
- Lake Stamford is the sole municipal water source forStamfordLuedersEricksdahlPaint CreekSagertonAvoca

Two Rural Water Suppliers

Pipeline Engineering – Concepts in Harmony

Corinth

Lake Stamford

- City of Stamford only owns the water rights to half the lake
 - Other half owned by American Electric Power
- Significant drought in 2000
 - Water diversion on California Creek diverted rainfall to Lake Stamford
 - Ensured maintenance of services
 - Now only used sporadically
- Additional water supply now comes from College Lake
 - Located within the City
 - Water main installed after drought in 1997

Water Line Replacement

- Lake Stamford transmission main was original to start of service
 - 15 mile 18-inch concrete steel cylinder pipe
 - As time passed, leaks became more frequent
 - 6 recorded incidents between 2010 and end of 2017
 - Each repair cost the city between \$10-15 thousand
 - Areas of depth required large equipment required outside contractors
- City worked with Enprotec / Hibbs & Todd (eHT) to design the replacement beginning in 2013
 - Also intended to replace the treatment plant and elevated storage
- Full replacement deemed necessary
 - Transmission main was the primary conduit of water into city – could not be shut off
 - Prior leaks proved level of deterioration

Determining Alignment

- Easiest to follow existing line
 - Already had easement
 - Only 25-feet wide
- City and eHT required permissions from private landowners along the right of way (ROW)
 - Temporarily expand ROW additional 25-feet
 - All owners were willing and compensated
 - No liens required
- Substantial brush and tree growth clearing needed

Installation Methodology

- Open Cut
 - Majority of alignment was through open field and ranchland
 - Most cost effective option
 - Required few surface improvements
 - Private land owners allowed trenched crossing of private roads
 - Allowed access to existing line
 - Repairs could be made as needed during installation of new line
 - Easier air valve removal process
- Boring
 - 2 steel cased bores required for highway crossings
 - 3 slick bores required for county road crossings

Soil Conditions

- eHT ordered a series of 16 test bores to check soil composition along alignment
 - One mile apart along full length of alignment
 - 10-foot depth
- Bores 14-16
 - Limestone located at 5-foot depth
- Bore 16
 - 6-inches of gravel at surface
- Confirmed open trenching was appropriate methodology
 - Pipe depth would be between 4-6 feet
 - Variant depending on terrain
 - Minimize number of required air relief valves

Pipe Material Options

- Either fusible polyvinyl chloride pipe (FPVCP) or high density polyethylene (HDPE)
 - Offered internally restrained systems
 - City crews familiar with both
- Project designed with decreasing pressure classes of pipe
 - Each pipe had different sizing requirements
 - HDPE required thicker pipe, with an overall ID change of 1.3-inches
 - FPVCP required thinner pipe, with an overall ID change of 0.5-inches

Pressure	Length of Pipe	14-inch FPVCP	16-inch HDPE
Low	55,000 LF	DR-25	DR-13
Medium	22,000 LF	DR-21	DR-11
High	2,600 LF	DR-18	DR-9

- Fittings
 - FPVCP could be directly connected to valves using Megalug[®]
 - HDPE would require adapter kits to connect to to standard mechanical joints or flanged fittings

Financing

- Engineer's estimate was \$6,067,000
- Stamford applied to the Texas Water Development Board (TWDB) for assistance
 - TWDB approved funding
 - 51.8% grant
 - 48.2% low interest loan through TWDB Drinking Water State Revolving Fund

Bidding and Award

- TWDB BWSRF Water System Improvements Contract A Raw Water Transmission Line
 - Bid on December 12, 2017
- MH Civil Constructors, Inc. (MH Civil) of Amarillo, TX declared lowest responsible bidder
 - \$5,152,000
 - Utilized base bid option
- MH Civil had not previously worked with FPVCP
 - Significant research and education in best onsite practices, tensile strength, and potential pitfalls with supplier company's regional manager

Construction - Adjustments

- Received notice to proceed January 8, 2018
- Submitted a request to adjust lateral spacing of pipe from existing pipeline
 - Constructability review determined that loads of construction equipment could cause additional failures in existing pipeline
- Two solution scenarios analyzed
 - 1. Utilize an excavator
 - 2. Utilize a trencher
- CAT 345 excavator weighed 109,000 pounds, width of 11 feet 5-inches
- Vermeer T955 trencher weighed 110,000 pounds, width of 11 feet 6-inches
- Expanded pipe spacing from 5-7 feet to 3-10 feet minimized loads on existing pipe
 - Allowed contractor more latitude to make alignment adjusts due to field conditions

Construction

- Between 1,000 and 3,000 feet of trench could be opened per day
 - Utilized Vermeer T955 trencher, CAT 345 and 320 excavators
 - ~2,000 feet of trench was left open for pipe laying to resume next day
- Vermeer 100x140 horizontal directional drill (HDD) machine used for shorter HDD sections

Pipe Fusion

- McElroy T-618 fusion machines
 - Up to 5 technicians
 - Up to 6 machines
- Total of 79,600 LF of FPVCP fused
- Technicians on site from February to July of 2018
- Multiple fusion stations along alignment
 - Less pipe movement required
 - Sites were generally located at max pull lengths of pipe or new valves

Atmos Gas and Texas Electric Service Company

- Atmos Gas
 - High-pressure gas line
 - Located a third of the way up the transmission line
 - Had a 50-foot easement
 - Water line crossed below gas line by open trench
 - Gas company representative on site
- Texas Electric Service Company
 - High-voltage powerlines
 - 150-foot easement
 - No on site representative, but 48-hour notice of intent to dig required

Meter Boxes

- Electronic radio-read water meters
 - Serve customers previously provided unmetered raw water
- Longer and more frequent droughts
 - Regulatory agencies and water systems increasing priority of water accountability
- Higher production and delivery costs
 - Growing need to monitor usage
 - Minimize water loss

Pressure Testing and Completion

- Pressure testing occurred in 5,000-foot long segments
 - 150 psi
 - 2 hours
- Began early July
- 15-mile pipeline
 - Zero loss in pressure
 - Zero make-up water required
- Testing completed July 18, 2018
- City began pumping water on July 27, 2018
 - Declared substantially complete
- Final inspection August 20, 2018

Conclusion

- Project completed 5 months ahead of schedule
- Cost of fixing leaks in existing pipe brought cost above bid price
 - Final cost of \$5,175,639.23
- Overall cost savings to city were substantial
 - Ability to abandon older line much earlier than anticipated
- Both owner and engineer very pleased with success

Questions?

